An Inverse Artificial Neural Network Based Modelling Approach for Controlling Hfcs Isomerization Process
نویسندگان
چکیده
Isomerization of the glucose content of high fructose corn syrup (HFCS) into fructose needs to be strictly controlled in order to obtain a balanced product for sweetness and solubility, creating a non-trival problem. This work presents an approach to modelling of a real industrial isomerization reactor by artificial neural networks (ANN) pre-processed with principal component analysis (PCA). The initial model considered the exit fructose concentration as the output variable while the substrate flow rate to the reactor as the principal input (manipulated) variable. Then the neural network model was restructured and inversely trained by assuming the exit fructose concentration as the input variable and the feed flow rate as the output variable. Results indicate good performance by application of the developed strategy to an extensive industrial data set. Copyright © 2006 IFAC
منابع مشابه
Monthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملApplication of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کامل